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Università degli Studi di Salerno, I-84081 Baronissi (SA), Italy

Received 9 November 2005 / Received in final form 23 January 2006
Published online 17 May 2006 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2006

Abstract. In this paper, we study the Ising model with general spin S in presence of an external magnetic
field by means of the equations of motion method and of the Green’s function formalism. First, the model
is shown to be isomorphic to a fermionic one constituted of 2S species of localized particles interacting
via an intersite Coulomb interaction. Then, an exact solution is found, for any dimension, in terms of a
finite, complete set of eigenoperators of the latter Hamiltonian and of the corresponding eigenenergies.
This explicit knowledge makes possible writing exact expressions for the corresponding Green’s function
and correlation functions, which turn out to depend on a finite set of parameters to be self-consistently
determined. Finally, we present an original procedure, based on algebraic constraints, to exactly fix these
latter parameters in the case of dimension 1 and spin 3

2
. For this latter case and, just for comparison, for the

cases of dimension 1 and spin 1
2

[F. Mancini, Eur. Phys. J. B 45, 497 (2005)] and spin 1 [F. Mancini, Eur.
Phys. J. B 47, 527 (2005)], relevant properties such as magnetization 〈S〉 and square magnetic moment
〈S2〉, susceptibility and specific heat are reported as functions of temperature and external magnetic field
both for ferromagnetic and antiferromagnetic couplings. It is worth noticing the use we made of composite
operators describing occupation transitions among the 3 species of localized particles and the related study
of single, double and triple occupancy per site.

PACS. 05.50.+q Lattice theory and statistics – 05.30.Fk Fermion systems and electron gas – 75.10.-b
General theory and models of magnetic ordering

1 Introduction

In a previous article [1], we have shown that a system con-
stituted of q species of particles, satisfying Fermi statis-
tics, subject to finite-range interactions and localized on
the sites of a Bravais lattice, is exactly solvable in any
dimension. By exactly solvable we mean that it is always
possible finding a complete, finite set of eigenenergies and
eigenoperators of the Hamiltonian which closes the hi-
erarchy of the equations of motion. Then, formal exact
expressions for the corresponding Green’s functions and
correlation functions can be derived. The solution is only
formal as these latter turn out to depend on a finite set
of parameters to be self-consistently determined. In refer-
ences [2,3], we have shown how is possible to exactly fix
such parameters, by means of algebraic constraints, for
the one-dimensional q = 1 and q = 2 cases, respectively.

In reference [1], we have also shown that this system
is isomorphic to a spin- q

2 Ising-like model in presence of
an external magnetic field. According to this, the exact
knowledge of a complete set of eigenoperators and eigenen-
ergies of the system in any dimension acquires an evident
relevance with respect to the hoary problem of solving
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the two-dimensional (in presence of an external magnetic
field) and the three-dimensional Ising models. In particu-
lar, the exact knowledge of the eigenenergies of the sys-
tem can shed some light on the energy scales ruling the
physical properties and the magnetic response of the sys-
tem and can find an application as unbiased check for the
approximate solutions present in the literature. Moreover,
this approach can eventually open a new route in the quest
for an exact solution for these systems in higher dimen-
sions as we have shown that it is always possible finding
a formal exact expressions for the corresponding Green’s
functions and correlation functions. The solution is only
formal as these latter turn out to depend on a finite set
of parameters to be self-consistently determined. We have
also shown how is possible to exactly fix such parameters,
by means of algebraic constraints, for the one-dimensional
case and we are now working on the possibility to use other
algebraic constraints and topological relations for higher
dimensions.

In this article, we apply this formulation to the one-
dimensional q = 3 case. This model is isomorphic to the
one-dimensional Ising model for spin S = 3

2 in presence
of an external magnetic field. This latter model can be
exactly solved by means of the transfer matrix method
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which reduces the solution to an eigenvalue problem of
the fourth order (generally, we have an eigenvalue problem
of the 2S + 1th order). Unfortunately, the analytic solu-
tions of a fourth order equation are well known, but ab-
solutely untractable and any result, along this way, could
be obtained only by means of numerical techniques, which
surely do not facilitate a microscopic understanding of the
properties of the system (see, for instance, Ref. [4]). In
1967, by means of a perturbation method, Suzuki, Tsu-
jiyama and Katsura managed to reduce the order of the
problem to the largest integer smaller than S + 1 in the
case of zero external magnetic field and exactly computed
the energy, the specific heat and susceptibility [5]. One
year later, Obokata and Oguchi [6] managed to apply the
Bethe approximation, which becomes exact in one dimen-
sion, to the system and to recover the same exact results
obtained by Suzuki. These latter were also recovered, few
years later, by Silver and Frankel [7], who managed to
formulate the problem as a difference equation of order
2S + 1 by an inductive technique and to reduce the order
to the largest integer smaller than S+1 in the case of zero
external magnetic field.

The spin- 3
2 Ising model in one dimension shows mag-

netic plateaus [8–11], i.e. topological quantization of the
magnetization at the ground state of the system due to
magnetic excitations, leading to the qualitatively same
structures of the magnetization profiles of the Heisenberg
model. According to this, the study of this classical sys-
tem can shed some light on the plateau mechanism and
if it has purely quantum origin or can also depend on
dimerization, frustration, single-ion anisotropy or peri-
odic field. These plateaus have been predicted not only
in theoretical study but also have been observed in ex-
perimental studies. For example, Narumi et al. [12,13]
observed the magnetic plateaus in the magnetiza-
tion curve for both [Ni2(Medpt)2(µ – ox)(H2O)2](ClO4)2
2H2O and [Ni2(Medpt)2(µ – ox)(µ-N3)](ClO4)0.5 H2O.
Goto et al. [14] reported the existence of the mag-
netization plateau at 0.25 in spin-1 3,3,5,5-tetrakis
(N-tert-butylaminxyl) biphenyl (BIP-TENO). In three di-
mensions and with additional terms in the Hamiltonian,
the spin- 3

2 Ising model have been initially introduced
to give a qualitative description of phase transition ob-
served in the compound DyVO4 [15] and also to de-
scribe ternary mixtures [16]. In particular, the phase di-
agram is not well known in contrast to the case S = 1,
which represents a special case of the Blume-Capel [17–20]
and of the Blume-Emery-Griffiths [21] models often used
to study a variety of interesting physical systems and,
in particular, 3He – 4He mixtures, fluid mixtures and
critical phenomena. The mean field treatment [22] pre-
dicts that the phase diagram differs for integer and half-
odd-integer spins and does not present any multicritical
point. While renormalization-group calculations [23,24]
and Monte Carlo simulations [25] suggest the existence of
a multicritical point, transfer matrix and conformal invari-
ance studies [26] show that there is no multicritical point
in the phase diagram. Unfortunately, Bethe-Peierls [27,28]
and two-spin-cluster approximations [29] have not been

performed in the low-temperature region. In qualitative
agreement with the mean-field analysis, we can also find
results from the self-consistent Ornstein-Zernike approxi-
mation [30].

In this manuscript, we present the exact solution of
the model in presence of an external magnetic field. In
the first section, we present the model. In the following
section, we give the general solution in terms of the eigen-
operators and of the eigenenergies. In the third section, we
specialize the solution to the one-dimensional q = 3–S = 3

2
case. In the fourth section, we show how to close the self-
consistent equations and compute all relevant correlation
functions. In the fifth section, we present relevant proper-
ties such as magnetization 〈S〉 and square magnetic mo-
ment 〈S2〉, susceptibility and specific heat as functions of
the temperature and the external magnetic field both for
ferromagnetic and antiferromagnetic couplings. Conclud-
ing remarks follow.

2 The model

We have analyzed a system constituted of q species of
interacting particles obeying Fermi statistics, localized on
the sites of a Bravais lattice and whose dynamics is ruled
by the following grand-canonical Hamiltonian

H = −µ
∑

i,a

na(i) +
1
2

∑

ij,ab

Vab(i, j)na(i)nb(j) (2.1)

where i stands for the lattice vector Ri and i = (i, t).
na(i) = c†a(i)ca(i) is the particle density operator of
particles of species a at the site i. ca(i) and c†a(i) are anni-
hilation and creation operators, respectively, of particles
of species a at the site i. They satisfy canonical anti-
commutation relations

{
ca(i, t), c†b(j, t)

}
= δabδij

{ca(i, t), cb(j, t)} =
{
c†a(i, t), c†b(j, t)

}
= 0 (2.2)

µ is the chemical potential and Vab(i, j) is the strength of
the interaction between particles of species a and b at dis-
tance |i−j|. We have supposed that the particles are frozen
on the lattice sites as their masses are very large and/or
the interactions are so strong that the kinetic energy is
negligible.

In this manuscript, we have focused on the case in
which the interaction Vab(i, j) does not depend on the par-
ticle species and is effective only between nearest-neighbor
sites. That is, Vab(i, j) = 2dV αij where d is the dimension-
ality of the system, αij is the projector on the nearest-
neighbor sites and V is the bare strength of the inter-
action. For a hyper-cubic lattice of lattice constant a we
have

αij =
1
N

∑

k

eik·(Ri−Rj)α(k)

α(k) =
1
d

d∑

n=1

cos(kna) (2.3)
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where N is the number of sites.
Hereafter, for a generic operator Φ(i), we will use the

following notation

Φα(i, t) =
∑

j

αijΦ(j, t). (2.4)

It is also useful to introduce the vectorial notation

c(i) =

⎛

⎜⎜⎜⎝

c1(i)
c2(i)

...
cq(i)

⎞

⎟⎟⎟⎠

c†(i) =
(
c†1(i) c

†
2(i) · · · c†q(i)

)
. (2.5)

and to define the total particle density

n(i) =
∑

a

na(i) =
∑

a

c†a(i)ca(i) = c†(i)c(i). (2.6)

Then, the Hamiltonian (2.1) becomes

H = −µ
∑

i

n(i) + dV
∑

i

n(i)nα(i). (2.7)

Let us consider now the transformation

n(i) =
q

2
+ S(i). (2.8)

It is clear that

n(i) = 0 ⇔ S(i) = −q/2
n(i) = 1 ⇔ S(i) = 1 − q/2
...
n(i) = q − 1 ⇔ S(i) = q/2 − 1
n(i) = q ⇔ S(i) = q/2. (2.9)

Under the transformation (2.8), the Hamiltonian (2.7) can
be cast in the form

H = −dJ
∑

i

S(i)Sα(i) − h
∑

i

S(i) + E0 (2.10)

where we defined

J = −dV
h = µ− qdV

E0 =
q

2

(
−µ+

q

2
dV

)
N. (2.11)

The Hamiltonian (2.10) is just the d-dimensional spin- q
2

Ising model with nearest-neighbor interaction in presence
of an external magnetic field. In this manuscript, we have
chosen to use the particle notation (2.7), but the results
that we have obtained are obviously valid for both the
particle (2.7) and spin (2.10) systems after the transfor-
mation (2.8) and the definitions (2.11).

3 Composite operators and equations
of motion

In order to apply the equations of motion method and the
Green’s function formalism, we need to identify a suitable
operatorial basis [31,32]. It is immediate to verify that the
particle density operator n(i) has no time dependence

i
∂

∂t
n(i) = [n(i), H ] = 0. (3.1)

According to this, the operator n(i), although it would
have been a natural choice as component of the operatorial
basis for such a system, is not suitable for this purpose.
Let us introduce, instead, the following series of composite
field operators

ψp(i) = c(i)[nα(i)]p−1 p = 1, 2, . . . (3.2)

whose first element is just c(i). These fields satisfy the
following hierarchy of equations of motion

i
∂

∂t
ψp(i) = −µψp(i) + 2dV ψp+1(i). (3.3)

Now, because of the anti-commutation relations (2.2), it
can be shown that the operators [nα(i)]p satisfy the fol-
lowing relation

[nα(i)]p =
2qd∑

m=1

A(p)
m [nα(i)]m (3.4)

where the coefficients A(p)
m are rational numbers that can

be easily determined after the algebra and the actual
structure of the lattice (see App. A for d = 1 and q = 3).
Then, for p = 2qd + 1, the hierarchy of equations of mo-
tion (3.3) closes as the additionally generated operator
ψ2qd+2(i) = c(i)[nα(i)]2qd+1 can be rewritten in terms of
the first 2qd+1 elements of (3.2) through the relation (3.4).

According to this, the n-component composite field op-
erator ψ(i), defined as

ψ(i) =

⎛

⎜⎜⎜⎝

ψ1(i)
ψ2(i)

...
ψn(i)

⎞

⎟⎟⎟⎠ =

⎛

⎜⎜⎜⎝

c(i)
c(i)nα(i)

...
c(i)[nα(i)]n−1

⎞

⎟⎟⎟⎠ (3.5)

where n = 2qd + 1, is an eigenoperator of the Hamilto-
nian (2.7) as it satisfies the equation of motion

i
∂

∂t
ψ(i) = [ψ(i), H ] = εψ(i) (3.6)

where the n×n energy matrix ε has the following expres-
sion

ε =

⎛

⎜⎜⎜⎜⎜⎝

−µ 2dV 0 · · · 0
0 −µ 2dV · · · 0
...

...
...

...
...

0 0 0 · · · 2dV
0 2dV A(n)

1 2dV A(n)
2 · · · −µ+ 2dV A(n)

n−1

⎞

⎟⎟⎟⎟⎟⎠
.

(3.7)
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The eigenvalues En of the energy matrix ε read as

Em = −µ+ (m− 1)V m = 1, 2, . . . , n. (3.8)

After (3.6), we can claim to have formally, but exactly,
solved both Hamiltonians (2.7) and (2.10) as we have de-
termined for them a complete set of eigenoperators and
eigenvalues in any dimension d. The solution is only for-
mal as we have still to compute all correlation functions.

Let us define the thermal retarded Green’s function

GR(i, j) =
〈
R[ψ(i)ψ†(j)]〉 = θ(ti − tj)〈{ψ(i), ψ†(j)}〉

(3.9)
where 〈· · · 〉 denotes the quantum-statistical average over
the grand canonical ensemble. By introducing the Fourier
transform

GR(i, j) =
i

(2π)2d+1

∫∫
dωdk eik·(Ri−Rj)−iω(ti−tj)GR(k, ω) (3.10)

and by means of the equation (3.6), we obtain the equation

[ω − ε]GR(k, ω) = I(k) (3.11)

where I(k) is the Fourier transform of the normalization
matrix

I(i, j) = 〈{ψ(i, t), ψ†(j, t)}〉. (3.12)

Equation (3.11) gives

GR(k, ω) =
n∑

m=1

σ(m)(k)
ω − Em + iδ

. (3.13)

The spectral density matrices σ(m)(k) can be calculated
by means of the formula [31]

σ
(m)
ab (k) = Ωam

∑

c

Ω−1
mcIcb(k) (3.14)

where Ω is the n×n matrix whose columns are the eigen-
vectors of the matrix ε. The correlation functions

C(i, j) = 〈ψ(i)ψ†(j)〉 (3.15)

can be immediately calculated after (3.13) and read as

C(k, ω) = π

n∑

m=1

Tmσ
(m)(k)δ(ω − Em) (3.16)

where

Tm = 1 + tanh
(
Em

2T

)
(3.17)

T is the temperature. By similar techniques we
can calculate multi-point correlation functions as
C(i, j; l1, l2, . . . , ls) = 〈ψ(i)ψ†(j)n(l1)n(l2) · · ·n(ls)〉. For
an example, see reference [2].

Formally, (3.13) and (3.16) constitute the exact solu-
tion of the problem under analysis. The solution is only
formal as the complete knowledge of the Green’s function

and of the correlation functions is not fully achieved owing
to unknown static correlation functions appearing in the
normalization matrix I(k) because of the complex non-
canonical algebra satisfied by the field ψ(i). The unknown
correlators are expectation values of operators not belong-
ing to the chosen basis ψ(i) and should be self-consistently
calculated in order to definitively conclude the analysis
and get the complete exact solution. Unfortunately, the
derivation of a set of self-consistent equations capable to
determine the unknown correlators is not an easy task at
all. Moreover, it depends on the particular model under
analysis and, in particular, on its dimension d. In refer-
ence [1], we have developed a technique to obtain a com-
plete exact solution in the one-dimensional case (d = 1)
by determining the unknown correlators by means of alge-
braic constraints. Within this framework, we have studied
the 2-state [2] (q = 1) and the 3-state [3] (q = 2) mod-
els. In this article, we consider the one-dimensional 4-state
(q = 3) model.

4 The one-dimensional 4-state model

We now apply the general formulation given in the previ-
ous Section to an infinite homogeneous chain (d = 1) with
q = 3. The derivation of the relation (3.4) for this specific
case and the explicit expressions of the coefficients A(p)

m

are given in Appendix A. Accordingly, the last row of the
energy matrix ε has the following non-zero entries

ε72 = −45
2
V ε73 =

441
4
V ε74 = −203V

ε75 =
735
4
V ε76 = −175

2
V ε77 = −µ+ 21V. (4.1)

The matrix Ω has the expression

Ω =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 26 1 (2/3)6 (1/2)6 (2/5)6 (1/3)6

0 25 1 (2/3)5 (1/2)5 (2/5)5 (1/3)5

0 24 1 (2/3)4 (1/2)4 (2/5)4 (1/3)4

0 23 1 (2/3)3 (1/2)3 (2/5)3 (1/3)3

0 22 1 (2/3)2 (1/2)2 (2/5)2 (1/3)2

0 2 1 (2/3) (1/2) (2/5) (1/3)
0 1 1 1 1 1 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4.2)

and the normalization matrix I reads as

I =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

I11 I12 I13 I14 I15 I16 I17
I12 I13 I14 I15 I16 I17 I27
I13 I14 I15 I16 I17 I27 I37
I14 I15 I16 I17 I27 I37 I47
I15 I16 I17 I27 I37 I47 I57
I16 I17 I27 I37 I47 I57 I67
I17 I27 I37 I47 I57 I67 I77

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4.3)

where

I1,p = κ(p−1) (4.4)

Ip,7 =
6∑

m=1

I1,m+1A
(p+5)
m (4.5)

κ(p) = 〈[nα(i)]p〉 . (4.6)
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Then, the spectral density matrices σ(m) can be easily
computed by means of equation (3.14) and the correlation
functions by means of equation (3.17).

It is worth noticing that, according to the struc-
ture of the normalization matrix I [(4.3) and (4.5)],
which is dictated by the relation (3.4), there exist only
seven independent spectral density matrices σ

(m)
1,p and

seven independent two-point correlation functions C1,p =
〈c(i)c†(i)[nα(i)]p−1〉. All others can be obtained as combi-
nations of these latter according to (3.4) and (4.5).

As regards the spectral density matrices, we have

σ(m) = ΣmΓ
(m) (4.7)

where Σm are functions of the elements I1,p with
p = 1, . . . , 7 and Γ(m) are numerical matrices. In partic-
ular, we have the expressions

Σ1 = I1,1

+
1

90
(−441I1,2 + 812I1,3 − 735I1,4 + 350I1,5 − 84I1,6 + 8I1,7)

Σ2 =
2

15
(90I1,2 − 261I1,3 + 290I1,4 − 155I1,5 + 40I1,6 − 4I1,7)

Σ3 =
1

6
(−90I1,2 + 351I1,3 − 461I1,4 + 274I1,5 − 76I1,6 + 8I1,7)

Σ4 =
4

9
(30I1,2 − 127I1,3 + 186I1,4 − 121I1,5 + 36I1,6 − 4I1,7)

Σ5 =
1

6
(−45I1,2 + 198I1,3 − 307I1,4 + 214I1,5 − 68I1,6 + 8I1,7)

Σ6 =
2

15
(18I1,2 − 81I1,3 + 130I1,4 − 95I1,5 + 32I1,6 − 4I1,7)

Σ7 =
1

90
(−30I1,2+137I1,3−225I1,4+170I1,5 − 60I1,6 + 8I1,7)

(4.8)

and

Γ
(1)
1,m = (1 0 0 0 0 0 0)

Γ
(2)
1,m =

(
1 2−1 2−2 2−3 2−4 2−5 2−6

)

Γ
(3)
1,m = (1 1 1 1 1 1 1)

Γ
(4)
1,m =

(
1 (2/3)−1 (2/3)−2 (2/3)−3 (2/3)−4 (2/3)−5 (2/3)−6

)

Γ
(5)
1,m =

(
1 (1/2)−1 (1/2)−2 (1/2)−3 (1/2)−4 (1/2)−5 (1/2)−6)

Γ
(6)
1,m =

(
1 (2/5)−1 (2/5)−2 (2/5)−3 (2/5)−4 (2/5)−5 (2/5)−6

)

Γ
(7)
1,m =

(
1 (1/3)−1 (1/3)−2 (1/3)−3 (1/3)−4 (1/3)−5 (1/3)−6)

(4.9)

As regards the two-point correlation function, we have

C(i, j) = δij
1
2

7∑

m=1

Tmσ
(m)e−iEm(ti−tj). (4.10)

5 Self-consistent equations

The correlation functions C1,k depend, through the spec-
tral density matrices that are functions of the entries
of the normalization matrix (3.14), on the correlators
κ(p) = 〈[nα(i)]p〉 with p = 1, . . . , 6. At this stage, the

correlators κ(p) are unknown as the operators [nα(i)]p do
not belong to the chosen basis (3.5).

To the purpose of definitively computing the correla-
tion functions C1,k, let us introduce the following opera-
tors

ξa(i) = [1 − n(i) +D(i)]ca(i)
ηa(i) = [n(i) − 2D(i)]ca(i)
ζa(i) = D(i)ca(i) (5.1)

where the double D(i) and the triple T (i) occupancy op-
erators at the site i read as

D(i) =
3∑

a,b=1
a<b

na(i)nb(i)

T (i) =
3∏

a=1

na(i). (5.2)

The operators ξa(i), ηa(i) and ζa(i) rule the transitions
among states with different particle number at the site i:
0 ⇔ 1, 1 ⇔ 2, 2 ⇔ 3, respectively. Their complex algebra
is presented in detail in Appendix B. In particular, they
satisfy the following relevant relations

ca(i) = ξa(i) + ηa(i) + ζa(i)

ξ†a(i)ηb(i) = ξ†a(i)ζb(i) = η†a(i)ζb(i) = 0 (5.3)

and

ξ†a(i)n(i) = 0 ξ†a(i)D(i) = 0 ξ†a(i)T (i) = 0

η†a(i)n(i) = η†a(i) η†a(i)D(i) = 0 η†a(i)T (i) = 0

ζ†a(i)n(i) = 2ζ†a(i) ζ†a(i)D(i) = ζ†a(i) ζ†a(i)T (i) = 0 (5.4)

for any choice of the indices a and b.
After (5.4), it is possible to show that (see Appendix C)

ξ†(i)e−βH = ξ†(i)e−βH0i

η†(i)e−βH = η†(i)

{
1 +

6∑

m=1

fm[nα(i)]m
}
e−βH0i

ζ†(i)e−βH = ζ†(i)e−βH0i

+ ζ†(i)
6∑

m=1

(2fm + gm)[nα(i)]me−βH0i (5.5)

where H0i is a reduced part of the Hamiltonian

H0i = H −HIi

HIi = 2V n(i)nα(i). (5.6)

We have used for ξ(i), η(i) and ζ(i) the same vectorial
notation that has been used for c(i) (see (2.5)). The co-
efficients fm and gm are defined in Appendix C. We will
exploit the relations (5.5) in order to compute the corre-
lation functions

Cξξ
1,k = 〈ξ(i)ξ†(i)[nα(i)]k−1〉

Cηη
1,k = 〈η(i)η†(i)[nα(i)]k−1〉 k = 1, . . . , 7

Cζζ
1,k = 〈ζ(i)ζ†(i)[nα(i)]k−1〉 (5.7)
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that, after the relations (5.3), sum up to C1,k = Cξξ
1,k +

Cηη
1,k + Cζζ

1,k. By means of (5.5), we have

Cξξ
1,k =

〈ξ(i)ξ†(i)[nα(i)]k−1〉0i

〈e−βHIi〉0i

Cηη
1,k =

〈η(i)η†(i)[nα(i)]k−1〉0i

〈e−βHIi〉0i

+
6∑

m=1

fm
〈η(i)η†(i)[nα(i)]k−1+m〉0i

〈e−βHIi〉0i

Cζζ
1,k =

〈ζ(i)ζ†(i)[nα(i)]k−1〉0i

〈e−βHIi〉0i

+
6∑

m=1

(2fm + gm)
〈ζ(i)ζ†(i)[nα(i)]k−1+m〉0i

〈e−βHIi〉0i
(5.8)

where for a generic operator O the notation 〈O〉0i denotes
the thermal average with respect to H0i

〈O〉0i =
Tr{Oe−βH0i}
Tr{e−βH0i} . (5.9)

Now, we observe that H0i describes a system where the
site i is not connected to any other site of the chain. Then,
at the site i the local operators enjoy a free dynamics

[ξ(i), H0i] = −µξ(i)
[η(i), H0i] = −µη(i)
[ζ(i), H0i] = −µζ(i). (5.10)

By means of these equations of motion and by making use
of the relations (B.8), it is possible to derive

〈
ξ(i)ξ†(i)[nα(i)]k−1

〉
0i

=
1

(1 + eβµ)3
〈
[nα(i)]k−1

〉
0i

〈
η(i)η†(i)[nα(i)]k−1

〉
0i

=
2eβµ

(1 + eβµ)3
〈
[nα(i)]k−1

〉
0i

〈
ζ(i)ζ†(i)[nα(i)]k−1

〉
0i

=
e2βµ

(1 + eβµ)3
〈
[nα(i)]k−1

〉
0i

(5.11)

and rewrite (5.8) as

Cξξ
1,k =

1
(1 + eβµ)3

〈[nα(i)]k−1〉0i

〈e−βHIi〉0i

Cηη
1,k =

2eβµ

(1 + eβµ)3
〈[nα(i)]k−1〉0i

〈e−βHIi〉0i

+
2eβµ

(1 + eβµ)3

6∑

m=1

fm
〈[nα(i)]m+k−1〉0i

〈e−βHIi〉0i

Cζζ
1,k =

e2βµ

(1 + eβµ)3
〈[nα(i)]k−1〉0i

〈e−βHIi〉0i

+
e2βµ

(1 + eβµ)3

6∑

m=1

(2fm + gm)
〈[nα(i)]m+k−1〉0i

〈e−βHIi〉0i
.

(5.12)

Therefore, we are left with the problem of computing the
functions 〈[nα(i)]p〉0i.

Now, we observe thatH0i describes a system where the
original infinite chain is split into two disconnected infinite
sub-chains (the infinite chains to the left and to the right of
the site i) plus the site i. Then, in the H0i-representation,
correlation functions which relate sites belonging to dif-
ferent sub-chains and/or the site i, can be decoupled:

〈a(j)b(l)〉0i = 〈a(j)〉0i〈b(l)〉0i (5.13)

when, for instance, j ≤ i ≤ l. a(j) and b(l) are any func-
tions of n(j) and n(l), respectively. Let us recall equa-
tions (A.7) and (A.8). By using the property (5.13), we
have

〈Z0(i)〉0i = 2X1

〈Z1(i)〉0i = 2X2 +X2
1

〈Z2(i)〉0i = 2X3 + 2X1X2

〈Z3(i)〉0i = 2X1X3 +X2
2

〈Z4(i)〉0i = 2X2X3

〈Z5(i)〉0i = X2
3 (5.14)

with

X1 = 〈nα(i)〉0i

X2 = 〈Dα(i)〉0i

X3 = 〈Tα(i)〉0i. (5.15)

Therefore, we have

〈[nα(i)]p〉0i =
1
2p

[
2X1 + b

(p)
1 (2X2 +X2

1 )

+2b(p)
2 (X3 +X1X2) + b

(p)
3 (2X1X3 +X2

2 )

+2b(p)
4 X2X3 + b

(p)
5 X2

3

]
. (5.16)

The problem of computing all two-point correlation func-
tions is thus reduced to the problem of computing just
three parameters: X1, X2 and X3. If we suppose the sys-
tem to be homogenous, we can use the following three self-
consistent equations in order to determine the unknown
parameters

〈n(i)〉 = 〈nα(i)〉 ⇒ 〈n(i)e−βH1〉0i = 〈nα(i)e−βH1〉0i

〈D(i)〉 = 〈Dα(i)〉 ⇒ 〈D(i)e−βH1〉0i = 〈Dα(i)e−βH1〉0i

〈T (i)〉 = 〈Tα(i)〉 ⇒ 〈T (i)e−βH1〉0i = 〈Tα(i)e−βH1〉0i.
(5.17)

By means of equations (C.2) and (B.9), we have

〈
n(i)e−βHIi

〉
0i

= B1 +
6∑

m=1

[fm(B1 + 2B2)

+gm(2B2 + 3B3) + hm3B3] 〈[nα(i)]m〉0i

〈
nα(i)e−βHIi

〉
0i

= X1 +
6∑

m=1

[fmB1 + gmB2

+hmB3]
〈
[nα(i)]m+1

〉
0i

(5.18)
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〈D(i)e−βHIi〉0i = B2 +
6∑

m=1

[(2B2 + 3B3)fm

+(B2 + 6B3)gm + 3B3hm] 〈[nα(i)]m〉0i

〈Dα(i)e−βHIi〉0i = X2 +
6∑

m=1

[B1fm +B2gm

+B3hm] 〈Dα(i)[nα(i)]m〉0i (5.19)

〈T (i)e−βHIi〉0i = B3

[
1 +

6∑

m=1

(3fm + 3gm

+hm)

]
〈[nα(i)]m〉0i

〈Tα(i)e−βHIi〉0i = X3 +
6∑

m=1

(B1fm +B2gm

+B3hm) 〈Tα(i)[nα(i)]m〉0i (5.20)

where

B1 = 〈n(i)〉0i =
3eβµ

eβµ + 1

B2 = 〈D(i)〉0i =
3e2βµ

(eβµ + 1)2

B3 = 〈T (i)〉0i =
e3βµ

(eβµ + 1)3
. (5.21)

We need to calculate the averages 〈Dα(i)[nα(i)]m〉0i and
〈Tα(i)[nα(i)]m〉0i. By using (A.7)

〈Dα(i)[nα(i)]p〉0i =
1
2p

5∑

m=0

b(p)
m 〈Dα(i)Zm(i)〉0i

〈Tα(i)[nα(i)]p〉0i =
1
2p

5∑

m=0

b(p)
m 〈Tα(i) · Zm(i)〉0i. (5.22)

By recalling the definitions (A.8) and using the prop-
erty (5.13)

〈Dα(i)[nα(i)]p〉0i =
1
2p

[2X2 + 3X3 +X1X2

+b(p)
1 (X2 + 6X3 +X2

2 + 2X1X2 + 3X1X3)

+b(p)
2 (3X3 + 2X2

2 +X1X2 + 6X1X3 + 4X2X3)

+b(p)
3 (3X1X3 +X2

2 + 8X2X3 + 3X2
3 )

+2b(p)
4 (2X2X3 + 3X2

3 ) + 3b(p)
5 X2

3

]
(5.23)

〈Tα(i)[nα(i)]p〉0i =
1
2p

[
3X3 +X1X3

+ b
(p)
1 (3X3 + 3X1X3 +X2X3)

+ b
(p)
2 (X3 +X2

3 + 3X2X3 + 3X1X3)

+ b
(p)
3 (3X2X3 +X1X3 + 3X2

3 )

+ b
(p)
4 (3X2

3 +X2X3) + b
(p)
5 X2

3

]
. (5.24)

Summarizing, the three parameters X1, X2, X3

are determined by the coupled self-consistent equa-
tions (5.18)–(5.20), where the averages 〈[nα(i)]m〉0i,〈Dα(i)[nα(i)]m〉0i and 〈Tα(i)[nα(i)]m〉0i are computed by
means of (5.16), (5.23) and (5.24), respectively. Once we
know the three parameters, we can calculate the correla-
tion functions and all the properties. For example,

Cξξ
1,k =

1 −B1 +B2 −B3

〈e−βHI 〉0i

〈
[nα(i)]k−1

〉
0i

Cηη
1,k =

2B1 − 4B2 + 6B3

3 〈e−βHI 〉0i

[
〈
[nα(i)]k−1

〉
0i

+
6∑

m=1

fm

〈
[nα(i)]m+k−1

〉
0i

]

Cζζ
1,k =

B2 − 3B3

3 〈e−βHI 〉0i

[
〈
[nα(i)]k−1

〉
0i

+
6∑

m=1

(2fm + gm)
〈
[nα(i)]m+k−1

〉
0i

]

C1,k = Cξξ
1,k + Cηη

1,1 + Cζζ
1,1

〈n〉 = 3 − 3C1,k

〈D〉 = 3 − 3(Cξξ
1,1 +

3
2
Cζζ

1,1 + 2Cηη
1,1)

〈T 〉 = 1 − 3(
1
3
Cξξ

1,1 +
1
2
Cζζ

1,1 + Cηη
1,1)

κ(p) =
〈[nα(i)]p〉0i

〈e−βHI 〉0i

+
6∑

m=1

(B1fm +B2gm +B3hm)
〈[nα(i)]m+p〉0i

〈e−βHI 〉0i

(5.25)

〈n(i)[nα(i)]p〉 = B1
〈[nα(i)]p〉0i

〈e−βHI 〉i0

+
6∑

m=1

[(B1 + 2B2)fm + (2B2 + 3B3)gm

+3B3hm]
〈[nα(i)]m+p〉0i

〈e−βHI 〉0i

. (5.26)

The coefficients fm, gm and hm are defined in Appendix C.
The average

〈
e−βHI

〉
0i

can be computed by means of (C.2)
and has the expression

〈
e−βHI

〉
0i

= 1+
6∑

m=1

(B1fm +B2gm +B3hm) 〈[nα(i)]m〉0i .

(5.27)

6 Results

6.1 Ferromagnetic coupling J = 1

In Figure 1, we report the magnetization per site m as
a function of the magnetic field h at J = 1, the double
D and the triple T occupancies per site as functions of



534 The European Physical Journal B

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

-8 -6 -4 -2 0 2 4 6 8

J=1

T=0.5
T=1.0
T=2.0

m

h

Fig. 1. (Top) Magnetization per site m as a function of the
magnetic field h at J = 1. (Middle top) Double D and triple
T occupancies per site as functions of the chemical potential
µ at V = −1. (Middle bottom) Square magnetic moment 〈S2〉
per site as function of the magnetic field h at J = 1. (Bottom)
Magnetic susceptibility χ as a function of the magnetic field
h at J = 1. In all panels, T = 0 (only in middle bottom), 0.5
(except for middle bottom), 1 and 2.

Fig. 2. (Top) Inverse magnetic susceptibility χ−1 at h = 0
and (bottom) magnetic susceptibility χ at h = 0.1 as functions
of the temperature T at J = 1 and spin 1/2, 1 and 3/2.

the chemical potential µ at V = −1, the square magnetic
moment 〈S2〉 per site as function of the magnetic field
h at J = 1 and the magnetic susceptibility χ as a func-
tion of the magnetic field h at J = 1 and T = 0 (only
in middle bottom panel), 0.5 (except for middle bottom
panel), 1 and 2. At the lower temperature (T = 0.5), go-
ing from negative to positive values of the magnetic field,
the magnetization jumps from − 3

2 to 3
2 and the suscepti-

bility diverges exactly at zero field. This is the signature
of a quite sharp transition between spin configurations
with maximum possible magnetization and direction dic-
tated by the value of the external magnetic field. This im-
mediately reflects on the values of the double and triple
occupancies that quite sharply jumps from zero to their
maximum possible values: 3 and 1, respectively. The tem-
perature just makes the transition smoother and forces
the system to pass through excited states with a lower
value of the absolute magnetization as it results clear by
looking at the values of the square magnetic moment.

In Figure 2, we report the inverse magnetic susceptibil-
ity χ−1 at h = 0 and the magnetic susceptibility χ at h =
0.1 as functions of the temperature T at J = 1 and spin
1/2, 1 and 3/2. The sharp transition at zero temperature
in zero external magnetic field is here clearly signaled by
the divergence of the magnetic susceptibility for any value
of the spin. At finite external magnetic field h = 0.1, the
susceptibility presents a maximum at a finite temperature
whose value depends on the value of the spin. Both at very
low and very high temperatures, the magnetization stays
constant at its maximum value or at zero, respectively,



A. Avella and F. Mancini: Exact solution of the one-dimensional spin- 3
2

Ising model in magnetic field 535

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 1 2 3 4 5

J=1 h=0.1
h=0.5
h=1.0
h=1.5

C

T

Fig. 3. Specific heat C as a function of the temperature T at
J = 1 and h = 0.1, 0.5, 1 and 1.5.

almost independently on the value of the external mag-
netic field. According to this, in these two regimes the
susceptibility is zero or practically zero. At intermediate
temperatures, the value of the magnetization definitely
depends on the value of the external magnetic field. This
explains the bell-shape of the susceptibility curve and the
presence of a maximum.

In Figure 3, we report the specific heat C as a function
of the temperature T at J = 1 and h = 0.1, 0.5, 1 and
1.5. The exponential behavior at low temperatures clearly
signals the presence of at least one gap in the excitation
spectrum between the fully polarized state, which is the
ground state for any non-zero value of the external mag-
netic field, and the first excited state to which corresponds
a lower value of the magnetization. This behavior also ex-
plains why we have been able to see a sharp transition in
the magnetization as a function of the external magnetic
field at temperatures as high as T = 0.5. The temper-
ature TM , at which is clearly observable a maximum in
all curves, strongly depends on the value of the external
magnetic field h. In particular, TM increases on increasing
h: the gap between the ground state and the first excited
state also increase on increasing h. We can speculate that
TM ≈ 1

2 (h+ 2J), that is half of the gap existing between
the fully polarized states with spin 3

2 and 1
2 .

6.2 Antiferromagnetic coupling J = −1

In Figure 4, we report the magnetization per site m as a
function of the magnetic field h at J = −1, the square
magnetic moment 〈S2〉 per site as function of the mag-
netic field h at J = −1 and the double D and the triple T
occupancies per site as functions of the chemical potential
µ at V = 1 and T = 0, 1 and 2. At zero temperature, go-
ing from negative to positive values of the magnetic field,
the magnetization first jumps from − 3

2 to 0 at h = 3J
and then from 0 to 3

2 at h = −3J . At these values of the
external magnetic field, the state of lower energy changes
from the fully polarized one with spin − 3

2 (E = 0) to the
antiferromagnetically aligned one with spins 3

2 and − 3
2

(E = − 3
2h + 9

2J) and from this latter to the the fully
polarized one with spin 3

2 (E = −3h), respectively. The
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Fig. 4. (Top) Magnetization per site m as a function of the
magnetic field h at J = −1. (Middle) Double D and triple T
occupancies per site as functions of the chemical potential µ
at V = 1. In both panels, T = 0, 1 and 2. (Bottom) Square
magnetic moment 〈S2〉 per site as function of the magnetic
field h at J = −1.

double and the triple occupancies behave accordingly. The
temperature just makes the transition smoother as it re-
sults clear by looking at the values of the square magnetic
moment. These latter also show the typical antiferromag-
netic behavior that will be easily identified in the features
of the susceptibility discussed below.

In Figure 5, we report the magnetic susceptibility χ
at J = −1 as a function of the external magnetic field h
for T = 0.8, 1, 1.5, 2, 3 and the temperature T for h = 0
and spin 1/2, 1 and 3/2. As we could expect from the
magnetization curves, the susceptibility diverges, at zero
temperature, at the critical values discussed above and is
null for all other values. On increasing the temperature,
the susceptibility becomes finite for any value of the ex-
ternal magnetic field, although not negligible only in an
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Fig. 5. Magnetic susceptibility χ at J = −1 as a function of
(top) external magnetic field h for T = 0.8, 1, 1.5, 2, 3 and
(bottom) temperature T for h = 0 and spin 1/2, 1 and 3/2.

increasing, but finite, range of values. According to this, as
the integral of the curves over the whole axis should give
a constant value, 3, that is, the larger jump in the magne-
tization, the heights of the two peaks steadily decrease on
increasing the temperature. As a function of the temper-
ature, the susceptibility has the typical thermal activated
behavior of the parallel antiferromagnetic susceptibility
for any value of the spin. According to this, we can inter-
pret the position of the maximum as the temperature at
which the system loses any memory of its antiferromag-
netic ground state at zero temperature.

In Figure 6, we report the specific heat C as a function
of the temperature T at J = −1 and h = −5 ⇒ −1.5.
The curves seem to show the typical pattern caused by
the interplay between at least two gaps in the excitation
spectrum: h − 3J and h − 2J . These would correspond
to transitions between the fully polarized state with spin
− 3

2 and the antiferromagnetically aligned state with spins
3
2 and − 3

2 and the fully polarized state with spin − 1
2 ,

respectively. The vanishing value of the first gap, in the
range of values of the external magnetic field presented
in the figures, could explain the much larger sensitivity of
the magnetization to temperature with respect to what
happens in the ferromagnetic state. It is worth noticing
the appearance of crossing points [33] for 3J < h < 2.5J
and 2.5J < h < 1.5J .
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Fig. 6. Specific heat C as a function of the temperature T at
J = −1 and h = −5 ⇒ −1.5.

7 Conclusions

We have studied the Ising model with general spin S in
presence of an external magnetic field by means of the
equations of motion method and of the Green’s function
formalism. First, the model has been shown to be iso-
morphic to a fermionic one constituted of 2S species of
localized particles interacting via an intersite Coulomb in-
teraction. Then, an exact solution has been found, for any
dimension, in terms of a finite, complete set of eigenoper-
ators of the latter Hamiltonian and of the corresponding
eigenenergies. This explicit knowledge has made possible
writing exact expressions for the corresponding Green’s
function and correlation functions, which turn out to de-
pend on a finite set of parameters to be self-consistently
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determined. Finally, we have presented an original proce-
dure, based on algebraic constraints, to exactly fix these
latter parameters in the case of dimension 1 and spin 3

2 .
For this latter case and, just for comparison, for the cases
of dimension 1 and spin 1

2 and spin 1, relevant proper-
ties such as magnetization 〈S〉 and square magnetic mo-
ments 〈S2〉, susceptibility and specific heat are reported
as functions of temperature and external magnetic field
both for ferromagnetic and antiferromagnetic couplings.
Ground state properties and relevant transitions and gaps
have been studied. Crossing points in the specific heat
have been identified.

Appendix A: Algebraic relations

1. Formula for np(i)

Illegal variable name.
We want to find a recurrence relation for the operator

np(i), with p ≥ 1. At first we note that

np(i) = (n1 + n2 + n3)p =
∑p

n=0

(
p
n

)

×∑n
l=0

(
n
l

)
nm−n

1 nn−l
2 nl

3 = [np
1 + np

2 + np
3]

+
∑p−1

n=1

(
p
n

)
[np−n

1 nn
2 + np−n

1 nn
3 + np−n

2 nn
3 ]

+
∑p−1

n=2

(
p
n

)∑n−1
l=1

(
n
l

)
np−n

1 nn−l
2 nl

3

(A.1)

Because of the property np
k = nk, (A.1) takes the form

np(i) = n(i) +D(i)
p−1∑

n=1

(
p
n

)
+ T (i)

p−1∑

n=2

(
p
n

) n−1∑

l=1

(
n
l

)

(A.2)
where D(i) and T (i) are the double and triple occupancy
operators as defined in (5.2).

The sums in (A.2) can be analytically performed

b
(p)
1 =

∑p−1
n=1

(
p
n

)
= 2p − 2

b
(p)
2 =

∑p−1
n=2

(
p
n

) ∑n−1
l=1

(
n
l

)
= 3(1 − 2p + 3p−1)

(A.3)
and we have the algebraic relation

np(i) = n(i) + b
(p)
1 D(i) + b

(p)
2 T (i) (A.4)

2. Formula for [nα(i)]p

By recalling that

[nα(i)] =
1
2
[n(i+ a) + n(i− a)] (A.5)

we have for p = 2, 3 · · · · · ·

[nα(i)]p = 1
2p

∑p
m=0

(
p
m

)
np−m(i+ a)nm(i− a)

= 1
2pn

p(i+ a) + 1
2pn

p(i− a) + 1
2p

∑p−1
m=1

(
p
m

)

×np−m(i+ a)nm(i− a).

(A.6)

Because of the algebraic relation (A.4) we obtain

[nα(i)]p =
1
2p

5∑

m=0

b(p)
m Zm(i) (A.7)

where the operators Zm(i) are defined as

Z0(i) = 2nα(i)
Z1(i) = 2Dα(i) + n(i+ a)n(i− a)
Z2(i) = 2Tα(i) + n(i+ a)D(i− a) + n(i− a)D(i+ a)
Z3(i) = n(i+ a)T (i− a) +D(i+ a)
×D(i− a) + n(i− a)T (i+ a)
Z4(i) = D(i+ a)T (i− a) +D(i− a)T (i+ a)
Z5(i) = T (i+ a)T (i− a)

(A.8)
and the new coefficients b(p)

m have the expressions

b
(p)
0 = 1

b
(p)
3 =

∑p−1
m=1

(
p
m

)
b
(m)
2 = 4(−1 + 22p−2 + 3 · 2p−1 − 3p)

b
(p)
4 =

∑p−1
m=1

(
p
m

)
b
(p−m)
1 b

(m)
2 =

5(1 − 22p − 2p+1 + 2 · 3p − 5p−1)

b
(p)
5 =

∑p−1
m=1

(
p
m

)
b
(p−m)
2 b

(m)
2 =

6(−1 + 5 · 2p−1 + 5 · 22p−1 − 10 · 3p−1 − 5p + 6p−1).
(A.9)

By solving (A.7) with respect to the quantities Zm(i) we
obtain the recurrence relation

[nα(i)]p =
6∑

m=1

A(p)
m [nα(i)]m (A.10)

where the coefficients A(p)
m are rational numbers defined

as

A
(p)
1 = 1

2p [2b(p)
0 − b

(p)
1 + 2

3b
(p)
2 − 1

2b
(p)
3 + 2

5b
(p)
4 − 1

3b
(p)
5 ]

A
(p)
2 = 1

2p [2b(p)
1 − 2b(p)

2 + 11
6 b

(p)
3 − 5

3b
(p)
4 + 137

90 b
(p)
5 ]

A
(p)
3 = 1

2p [43b
(p)
2 − 2b(p)

3 + 7
3b

(p)
4 − 5

2b
(p)
5 ]

A
(p)
4 = 1

2p [23b
(p)
3 − 4

3b
(p)
4 + 17

9 b
(p)
5 ]

A
(p)
5 = 1

2p [ 4
15b

(p)
4 − 2

3b
(p)
5 ]

A
(p)
6 = 1

2p
4
45b

(p)
5 .

(A.11)
We note that

∑6
m=1A

(p)
m = 1

A
(p)
m = δmp (p ≤ 6).

(A.12)

In Table 1 we give some values of the coefficients
A

(p)
m (p > 6).
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{ξ(i), ξ†(j)} = δij

⎛

⎝
(1 − n2(i))(1 − n3(i)) −c1(i)c

†
2(i)(1 − n3(i)) −c1(i)c

†
3(i)(1 − n2(i))

−c2(i)c
†
1(i)(1 − n3(i)) (1 − n1(i))(1 − n3(i)) −c2(i)c

†
3(i)(1 − n1(i))

−c3(i)c
†
1(i)(1 − n2(i)) −c3(i)c

†
2(i)(1 − n1(i)) (1 − n1(i))(1 − n2(i))

⎞

⎠ (B.1)

{η(i), η†(j)} = δij

⎛

⎝
n2(i) + n3(i) − 2n2(i)n3(i) c1(i)c

†
2(i)(1 − 2n3(i)) c1(i)c

†
3(i)(1 − 2n2(i))

c2(i)c
†
1(i)(1 − 2n3(i)) n1(i) + n3(i) − 2n1(i)n3(i) c2(i)c

†
3(i)(1 − 2n1(i))

c3(i)c
†
1(i)(1 − 2n2(i)) c3(i)c

†
2(i)(1 − 2n1(i)) n1(i) + n2(i) − 2n1(i)n2(i)

⎞

⎠ (B.2)

Table 1.

p A
(p)
1 A

(p)
2 A

(p)
3 A

(p)
4 A

(p)
5 A

(p)
5

7 − 45
4

441
8

− 203
2

735
8

− 175
4

21
2

8 − 945
8

9081
16

− 8085
8

13811
16

− 735
2

133
2

9 − 5985
8

56763
16

− 98915
16

81585
16

− 32739
16

1323
4

10 − 59535
16

559503
32

− 480375
16

774575
32

− 37485
4

22827
16

Appendix B: Algebra of the projection
operators

On the basis of the canonical anti-commutation rela-
tions (2.2) it is straightforward to derive the algebra sat-
isfied by the operators ξa(i), ηa(i), ζa(i) defined in (4.2).
Their anti-commutation relations are

See equations (B.1) and (B.2) above.

{ζ(i), ζ†(j)} =

δij

⎛

⎜⎝
n2(i)n3(i) c1(i)c

†
2(i)n3(i) c1(i)c

†
3(i)n2(i)

c2(i)c
†
1(i)n3(i) n3(i)n1(i) c2(i)c

†
3(i)n1(i)

c3(i)c
†
1(i)n2(i) c3(i)c

†
2(i)n1(i) n1(i)n2(i)

⎞

⎟⎠

(B.3)

It easy to verify that

{ξ(i), ξ†(j)}+ {η(i), η†(j)}+ {ζ(i), ζ†(j)} = δij

⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠ .

(B.4)
Other relevant algebraic properties are

∑3
a=1 ξa(i)ξ†a(i) = 3(1 − n(i) +D(i) − T (i))∑3
a=1 ξ

†
a(i)ξa(i) = n(i) − 2D(i) + 3T (i)

(B.5)

∑3
a=1 ηa(i)η†a(i) = 2n(i) − 4D(i) + 6T (i)∑3
a=1 η

†
a(i)ηa(i) = 2D(i) − 6T (i)

(B.6)

∑3
a=1 ζa(i)ζ†a(i) = D(i) − 3T (i)∑3
a=1 ζ

†
a(i)ζa(i) = 3T (i).

(B.7)

By means of these relations we can express the particle
density operator, the double and triple occupancy opera-
tors as

n(i) = 3 − ∑3
a=1(ξa(i)ξ†a(i) + ηa(i)η†a(i) + ζa(i)ζ†a(i))

D(i) = 3 − ∑3
a=1(ξa(i)ξ†a(i) + 3

2ηa(i)η†a(i) + 2ζa(i)ζ†a(i))
T (i) = 1 − ∑3

a=1(
1
3ξa(i)ξ†a(i) + 1

2ηa(i)η†a(i) + ζa(i)ζ†a(i))
(B.8)

Also, the following relations hold

n2(i) = n(i) + 2D(i)
n(i)D(i) = 2D(i) + 3T (i)
n(i)T (i) = 3T (i)

D2(i) = D(i) + 6T (i)
D(i)T (i) = 3T (i)
T 2(i) = T (i)

(B.9)

Appendix C: Calculation of e−βHIi

From the definition HIi = 2V n(i)nα(i) we have

e−βHIi = 1 +
∞∑

p=1

1
p!

(−1)p(2βV )pnp(i)[nα(i)]p (C.1)

Recalling (A.4) and (A.10) we can write

e−βHIi = 1 +
∞∑

p=1

1
p!

(−1)p(2βV )p[n(i)

+ b
(p)
1 D(i) + b

(p)
2 T (i)]

6∑

m=1

A(p)
m [nα(i)]m

= 1 + n(i)
6∑

m=1

fm[nα(i)]m

+D(i)
6∑

m=1

gm[nα(i)]m

+ T (i)
6∑

m=1

hm[nα(i)]m (C.2)

where

fm =
∞∑

p=1

1
p!

(−1)p(2βV )pA(p)
m

gm =
∞∑

p=1

1
p!

(−1)p(2βV )pb
(p)
1 A(p)

m

hm =
∞∑

p=1

1
p!

(−1)p(2βV )pb
(p)
2 A(p)

m . (C.3)

By using the explicit expression (A.11) of the coefficients
A

(p)
m , the infinite sums in (C.3) can be analytically per-

formed. Straightforward calculations show that the pa-
rameters fm, gm and hm are linear combinations of e−nβV

with n ranging from 0 to 18.
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4. E. Aydmer, C. Akyüz, M. Gönülol, H. Polat (2005), e-

print arXiv:cond-mat/0507177
5. M. Suzuki, B. Tsujiyama, S. Katsura, J. Math. Phys. 8,

124 (1967)
6. T. Obokata T. Oguchi, J. Phys. Soc. Jpn. 25, 322 (1968)
7. H. Silver N.E. Frankel, Prog. Theor. Phys. 46, 737 (1971)
8. X.Y. Chen, Q. Jiang, W.Z. Shen, C.G. Zhong, J. Magn.

Magn. Mat. 262, 258 (2003)
9. V.R. Ohanyan N.S. Ananikian, Phys. Lett. A 307, 76

(2003)
10. E. Aydmer, Chin. Phys. Lett. 21, 2289 (2004)
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